
Notes on Computer Game Design Innovation with Patterns

Kevin McGee
Communications and New Media Programme

National University of Singapore
Singapore

mckevin@nus.edu.sg

ABSTRACT
How can we help people design well-formed and innovative
games? The design Patterns of Christopher Alexander is
one methodology that has been proposed to assist in the de-
sign of well-formed artifacts. However, most work on game-
design Patterns to date has opted either for “best practice”
style Patterns – or for an alternative model of Patterns to
support game innovation. This paper describes initial work
to develop materials to help developers identify and formu-
late “best practice” game design Patterns – and to use the
resulting Patterns as part of creating innovative games.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; H.1 [Information Systems Applications]: Mis-
cellaneous

General Terms
Design, Human Factors, Theory

Keywords
Design Methodologies, Game Design, Design Patterns, Game
Innovation, Computer Games, Design Education

1. INTRODUCTION
How can we help people design well-formed and innovative

games?
Of the myriad methodologies for game design, when it

comes to the actual process of designing something well-
formed, the majority provide fairly general guidelines appli-
cable to the design of any computer application (e.g., proto-
type, test, iterate) – or provide more or less crisp evaluation
criteria for game prototypes. Similarly, work on method-
ologies for game innovation is mostly in the form of generic
“how to” techniques for either the brainstorming of new con-
cepts or for “translating innovative concepts into design.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IE2007 December 2007, Melbourne, Australia
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The design Patterns of architect Christopher Alexander
and his colleagues is one methodology that has been pro-
posed to assist the design of well-formed architecture [2,
1]. Such Patterns are precise but flexible design rules that
express a relationship between particular design contexts,
forces (psychological, social, or structural constraints), and
desired (“positive” or good) features. Design Patterns have
been extended to such computer-related domains as software
development [5, 6], HCI [4, 9], and computer game design.
[3, 7].

Alexander’s architectural Patterns are clearly rule-like and
emphasize a feature of the built environment that is ex-
perienced as good by the inhabitants. For various reasons,
most work on computer-related design Patterns has dropped
one or both of these characteristics. Much of the work on
software-development and HCI Patterns, for example, has
retained the focus on rule-like (or “best practice”) formu-
lations, but has concentrated on Patterns that articulate
best-practice knowledge about what is good for developers
rather than for end-users.1

Another major limitation of work done on Patterns by the
“best practice” community is that, although there is some
work on formalizing the necessary elements and stylistics of
Pattern creation [8], such work is often done in terms of a
desired result rather than particular techniques for achieving
those results. More importantly, there is very little in the
literature – beyond Alexander’s initial sketch [1]) – about
the process of identifying and articulating the information
necessary for a well-formulated Pattern. There seems to be
an unspoken assumption that this is a social process of trial
and error. Thus, there is very little in the way of proposals
for particular tools or guidelines for creating and refining the
content of a Pattern. For example, once one has identified
a potential Feature, how does one identify relevant Forces?
How does one articulate those Forces so that the express
user (rather than, say, developer) concerns?

Furthermore, the main focus in Pattern development has
always been on the articulation of design knowledge about
what is already known to be good. One aspect of this is
that, unlike the emphasis on “novelty” in much design work,
the development of architectural Patterns has always em-
phasized identifying features where occupants respond with
recognition: “of course.” The Pattern community at large
has taken this very much to heart, emphasizing the every-

1Of course, architectural Patterns are also intended for mak-
ers, but for Alexander, the validation of a Pattern is always
in terms of whether occupants experience a built structure
with the Pattern as better than one without it.

day, commonsense characteristic of Patterns. Indeed, many
go so far as to emphasize the importance of anonymous au-
thorship, since the focus should be on the articulation of ex-
isting “common knowledge” rather than individual creativ-
ity. Said another way, within the Patterns community there
is a pervasive commitment to the belief that Patterns are
not intended to support innovation, but rather to clearly
document “what works.”

This raises a challenge if we are considering Patterns as
the basis for supporting innovation in game design. To be
sure, architectural Patterns support some degree of novelty:
each house, although generated from a specific Pattern lan-
guage (collection of Patterns), is distinct and original. But
the very design of Patterns seems to discourage their use for
the creation of innovative alternatives.

One approach to Patterns that might be a candidate for
supporting game design innovation is the work of Bjork and
Holopainen [3]. They explicitly claim that one potential
function for their Patterns is “idea generation.” Given what
has been said so far, it should not be surprising that their
model of design Patterns differs from the typical “best prac-
tice”model advocated by Alexander and most other Pattern
developers. Rather, for Bjork and Holopainen, “game design
patterns are semiformal interdependent descriptions of com-
monly recurring parts of the design of a game that concern
gameplay” [3].

Specifically, their game design Patterns are largely de-
scriptive rather than proscriptive (or rule-like). For ex-
ample, their proposed game Patterns include such things
as Lives, High Score List, Time Limit, and Power-
Ups. Readers familiar with computer games should rec-
ognize these as possible, rather than necessary or good, at-
tributes. And although the choice/use of Alexander’s can
also be optional for particular architectural structures, Alexan-
der’s Pattern formulation also specifies when/where a Pat-
tern should be used (“context”). The way Patterns are for-
mulated by Bjork and Holopainen does not include such pro-
scriptive information. Their assumption seems to be, then,
that their Patterns can function as a source of inspiration
for the choice of potential game features; and, because of
the way their Patterns are described and structured, they
can indicate the possibility of related Pattern dependencies
and conflicts. Unlike best-practice Patterns however, they
are not rule-like and offer less guidance about their use in
the process of design. Bjork and Holopainen might argue
that their approach gives designers more creative freedom
than the “best practice” approach. Nonetheless, the ques-
tion remains whether it might be possible to combine the
“best practice” approach to design Patterns with the notion
of supporting game design innovation.

This then is the two-fold purpose of this paper: to sketch
an example of how written materials can support the Pattern-
creation process for game design – and to illustrate the pos-
sibility of Pattern-based innovation. Specifically, are there
tools or techniques that can be used to guide Pattern cre-
ation and refinement – and once a viable, rule-like game
design Pattern has been created, can it then be used in the
process of design innovation? This paper describes some ini-
tial results derived from trying to address these two issues.

The structure of the remainder of this paper is as fol-
lows. First, Alexander’s original methodology for creating
architectural Patterns is summarized. This is followed by
a description of an analogous process we have used to help

students to create design Patterns for computer games: the
tools we have used and the way we have used the resulting
patterns as a source of game-design innovation.

2. CREATING DESIGN PATTERNS
Although design Patterns are widely known, less famil-

iar is Alexander’s proposal for the process of identifying and
articulating them [1]. Since we have largely followed this ap-
proach in our work on game design Patterns, we will briefly
sketch Alexander’s model to provide context for our work.

A canonic example from the work of Christopher Alexan-
der presents the problem this way: imagine there some par-
ticular room that you really like – some quality that makes
you feel, this is a good room. Now, imagine you are going
to ask someone to build a building – and you would like to
ensure that the new building has a room with the “quality of
goodness” experienced in the room that you like. How can
we describe the architectural feature of the room you like in
such a way that the builder can make another one that has
this quality? Further, assuming that the new room cannot
be an exact duplicate of the room you like, how to articulate
the quality in a way that takes variety of architectural spaces
into account? To be clear, this is not a question of personal
taste (“the room is blue because blue is my favorite color”)
or experience (“the room is special because it is where I ex-
perienced my first kiss”). It is also not nebulous or vague:
we cannot ask the builder to imbue the new room with the
“aura” of the room we like.

Alexander’s belief is that traditional builders knew the
answer to this question: they copied existing buildings that
were good. But they did not copy particular elements; rather,
they copied the patterns of existing buildings. This, accord-
ing to Alexander, is why buildings in traditional villages all
feel as if they “belong together” even though each one differs
from the other. Alexander’s work on architectural design
Patterns was initially motivated by the desire to make ex-
plicit the Patterns he felt were intuitively learned and under-
stood by traditional cultures where people built their own
buildings. Thus, Alexander proposes a two-part process for
modern users of architectural Patterns. First, to the extent
that there exists an explicit Pattern language, people should
select from the language the Patterns that are relevant to
their specific project. Then, to the extent that people feel
there are Patterns “missing” for their particular project, he
briefly outlines a process for inventing new, appropriate Pat-
terns.

An Alexandrian Pattern is presented in the form of a
description that highlights the Pattern’s name, the Forces
(human concerns) it addresses, the Feature that resolves the
tension of those Forces, and the Pattern’s Context (the when
or where that this Pattern is appropriate).

• Feature: what is the “something” we want to build?

• Forces: why is this “something” helping to make the
built structure Good?

• Context: when (or, where) will this pattern work?

As an example of a Pattern that Alexander and his col-
leagues articulated, consider their perhaps best-known ex-
ample: when designing a building, make sure that there is
natural Light on Two Sides of Every Room. Below is
an abbreviated version of the Pattern.

Name: Light on Two Sides of Every Room

Forces: In rooms lit on one side, the glare which
surrounds people’s faces prevents people from un-
derstanding one another.

Therefore:

Feature: locate each room so that it has outdoor
space outside it on at least two sides, and then
place windows in these outdoor walls so that nat-
ural light falls into every room from more than
one direction.

As we can see, such a Pattern is in the form of a “positive”
rule: it specifies something specific to achieve – rather than
being a rule of the form, “do not do X.”

There have been many debates about the validity of spe-
cific Patterns (and the Pattern approach in general). For our
purposes here, we wish merely to emphasize certain charac-
teristics of the Patterns. They are operational and precise
(we“know what to do” to realize a pattern); flexible (there is
more than one solution that satisfies a pattern – e.g., there
are a multitude of different ways to attain “natural light
on two sides of a room”); testable (we can confirm empiri-
cally whether people feel better in structures that contain
the Pattern – versus those that do not); debatable (it is clear
enough to criticize); something good about end-user experi-
ence (that is, not just something good from the perspective
of builders/implementers); often obvious (in retrospect).

How do we create new Patterns? The main method sketched
by Alexander is roughly as follows. Start by noticing an ar-
chitectural situation where one feels good. Now, try to iden-
tify something architectural that contributes to this good
feeling: try to articulate it in the form of an architectural
relationship that can clearly be present (or not) in a struc-
ture. This aspect of Pattern creation can take a long time,
with many iterations of discussion and revision. Once one
feels one has identified such a Feature, work to identify the
conflicting Forces it resolves. Finally, identify the Context
in which it is relevant (for example, Alexander claims that
Light on Two Sides of Each Room is not necessary for
rooms that are very shallow – or that have very tall).

3. CREATING GAME-DESIGN PATTERNS
Following Alexander, we would like good methods for iden-

tifying the features of games that make them good – and
for articulating design knowledge about those features that
makes it possible to communicate what they are and how to
build them.

One incident will serve to illustrate what I have in mind
as a target for such design Patterns – and some of the dif-
ficulties about creating such a Pattern. In 2001 I taught
a university course on the design of media technologies to
support end-users. The course consisted of different design
teams and they were required to use the method of identify-
ing, articulating, and applying a design Pattern relevant to
their project-focus. One team had members with children
who were actively engaged in making stories in the form of
physical “multimedia books” by folding paper, cutting out
pictures to glue on, drawing, creating texts, and so on. One
of the issues was that sometimes the children“couldn’t think
of anything to make a story about.” This team’s goal was to
design a computer-based tool/environment for making anal-
ogous multi-media stories. In particular, they wanted their

tool to address the problem encountered by one of their test-
users: “how can the system help when users ’run out of story
ideas’?” (Before reading further, readers might consider for
a moment how they would try to solve this design problem.)

Since we were working specifically with the use of design
Patterns, the team first tried to identify an existing example
of “success.” In other words, they tried to identify some ex-
ample where someone had “writer’s block” and “something
helped.” One of the team members started trying to learn
“what her son did” in such cases.2 Eventually, after many
attempts on the part of his mother to formulate partial in-
sights in terms of a design Pattern, it was the son who al-
most casually articulated the design Pattern himself: Place
a Well-known Figure in an Unusual Situation.

It turned out that the boy liked to draw a particular char-
acter and make stories about the character. Whenever he
couldn’t think of a story, he would put the character in odd
situations to see if it inspired him. In this case, the particu-
lar character was “well known” to the boy because it was the
boy’s own creation, but the same heuristic can obviously be
used with characters that are more widely “well known.”

There are many insights to be drawn from this example,
but for now it is enough to highlight how it meets the main
requirements of a design Pattern: it is centered on the end-
user experience, generative, flexible, testable, and it is clear
enough to be debatable. Finally, it is almost obvious (in
retrospect). Indeed, it is a well-known heuristic for gener-
ating new ideas formulated as a design Pattern. Although
each team in the course arrived at more or less successful
design Patterns for their projects, it became clear that it
would be nice if there was better support for students in the
process of discovering/creating such patterns. One obvious
target would be “a pattern-language for creating patterns.”
The next section highlights some initial attempts to start
creating this.

3.1 Game-design Pattern Course
Subsequent to the course described above, I co-taught a

course on the design of computer games. My main role in the
course was to facilitate the creation and application of design
Patterns to the computer games each team was required to
implement.

The Pattern-relevant structure of the course was as fol-
lows. In order for students to appreciate the value of the
Pattern approach, in the first session students were intro-
duced to some architectural design Patterns from Alexander.
We then had them work in five small teams and use a limited
set of the patterns to design a workspace for twenty-five (25)
people. When they were done, we discussed the design pro-
cess they had just experienced. A number of students com-
mented with surprise that it was more design-oriented than
most of their experiences “designing something with others.”
Those other design experiences were often dominated by ar-
guments and debates of “personal opinion” and “being lost.”
Although neither I nor the students were expecting design
Patterns to be a “magic bullet” for the game design process,
they were all nonetheless fascinated that their brief expo-
sure to the use of Patterns led to a process of design that

2Readers familiar with such “ethnographic investigations of
end-users” can imagine the richness of issues that arose. Ex-
ploring them here would take us too far afield, but are the
subject of a separate paper recently submitted for publica-
tion.

was fairly concrete, focused, and productive.
Then the five design results were displayed for everyone.

Students were surprised at both the variety of solutions that
nonetheless met the Pattern constraints – and at the fact
that the solutions together formed a collection. That is, al-
though each particular design was individual and distinctive
– although this result was not one of the goals of the exer-
cise – looking at them together, we could see how they were
generated by the same design language.

Finally, we also discussed the fact that “going the other
way” would be difficult – that is, it would be a hard task to
start by studying the resulting examples and then deriving a
common pattern-language. Nonetheless, students were told
that this “hard task” would be something we would do as
part of the course.

During the remainder of the course, students worked in
teams and each team was expected to implement three dif-
ferent types of computer games: a variation of Breakout,
Bul, and Hammurabi. Teams were provided with an initial
reference specification for the original version of the game –
which they then had to implement. As they were working
on this, each team was simultaneously working to identify a
Pattern of something about the reference game that made
it good/fun to play. When teams completed the implemen-
tation of the reference version of the game, they were then
required to modify the implementation to make their own
original variation. In particular, they were expected to mod-
ify the original version so that the particular design Pattern
identified by the team had a “stronger” presence in the new
game.

The Pattern-creation process was one in which each team
proposed an initial draft Pattern, posted it to the course
members, and then we would devote a design session to dis-
cussing each Pattern, evaluating them and proposing im-
provements. Simultaneously, during lab (implementation)
sessions each team was given feedback about their efforts to
incorporate the Pattern into the new game. Final submis-
sion of each project consisted of the game implementation,
a single-page design Pattern, and a short (half-page) docu-
ment describing how the team’s design Pattern was realized
in its game.

Thus, the course involved a lot of the social process of
discussion and iteration. However, the remainder of this
section describes some of the specific written instructions
and templates we used to support the process of Pattern
identification and articulation. In the interests of brevity,
the example documents only relate to the identification of
Features and Forces. Also, although the course ultimately
resulted in fifteen design Patterns (five student-teams, each
producing a different Pattern for each type of game), the
description will highlight the identification, formulation and
application of one particular Pattern by one of the teams.

3.1.1 Stage 1: Pattern Creation
In preparation for developing Patterns, students were given

a sheet that summarized certain “canonic wisdom” about
Pattern development (e.g., “identify something you actually
find fun – not something you are ’supposed’ to find fun”).
They were also given a game-design Pattern document that
included guidelines and a Pattern template.

Game-design Pattern Guidelines/Template

Name: It is very important for a Pattern to
have a good name. A good name is usually in
a form that is an answer to the question, “What
should a designer make?” Note that an architec-
tural pattern name describes a physical attribute.
For computer game, the pattern name describes
a procedural relationship – that is, a mapping of
user-interaction to game behavior.

Example pattern-name: “ Light On Two Sides
of Every Room”

Warning! With a good name, it should be possi-
ble to answer clearly: “is the pattern present and
significant in the intended artifact?”

Example: “Does the room have natural Light
On Two Sides?”

Forces: The Forces should be things that peo-
ple care about (psychologically, emotionally, eco-
nomically, etc.). The description of Forces should
include a maximum of two forces – and they must
be in conflict.

So, the pattern for a description of Forces:

• Force 1: if a game does not have/allow [A],
then players will experience problem [X].

• the word “But,”

• Force 2: if a game does have/allow [A], then
players will experience problem [Y].

Do not include “solutions” in the descriptions of
Forces. Rather, one force usually expresses a
problem that happens if we “go to far” with the
opposite of the other force.

Feature: The feature should be something “pos-
itive” – that is, it should describe something we
should make (as opposed to something we should
not make). The description of Forces should present
a kind of conflict – and the pattern description
continues by saying, in effect, “therefore, design-
ers should make (or build or do) the following
solution (feature).”

So, the pattern for a description of Feature:

• the word “Therefore,”

• a word that means making or building or
doing

• the specific rule to follow (feature) that will
allow designers to resolve the conflicts (forces)
described.

Observe that although a feature is a rule to fol-
low, it is almost never expressed in terms of a
single value (“make it blue” or “build it 20 me-
ters long”); rather, it is a ratio (“place windows
so as to create natural light on two sides of a
room”) or a relationship (“put the doors as near
the corners of the room as possible”).

Example

Name: Difficulty-increase Driven by Player

Force 1: if a game does not have/allow challenge,
then players will experience problem of boredom.

BUT,

Force 2: if a game does have/allow too much chal-
lenge, then players will experience problem of “it
is too hard” and just give up.

Feature: Therefore, implement games so
they start “easy”, but the increase in diffi-
culty is directly driven by the rate and de-
gree to which player succeeds at the chal-
lenges.

Before engaging in the use of this template document to
create their first drafts, students also read some additional
material from Christopher Alexander and attended a com-
bination lecture/discussion on the use of the template and
ways to apply it toward the analysis of the first game (Break-
out). Below is part of one team’s first draft of a design
Pattern developed for Breakout-like games:

Name: Reward increased Hand-eye Coor-
dination

Forces: For games that require timing and hand-
eye skill:

Force 1: If a game behaves randomly and the
player cannot effect the game sufficiently in a
positive direction, the player will lose interest in
improving and will stop playing.

But,

Force 2: If the game provides rewards for in-
creased hand-eye skill in the form of better re-
sults then the player will discover a reason to
continue and try to improve.

Feature: Therefore, provide rewards in the form
of better results for hand-eye coordination and
skill.

The Pattern shows insight into something important, but
it is still rough. For example, the Feature is a bit too general
for a developer to really use (what is “better”?), etc.

3.1.2 Stage 2: Pattern Improvement
After each team submitted a written draft of a design Pat-

tern, students were provided with a checklist to support an
evaluation and discussion of the different Patterns proposed.
Specifically, each student was asked to look at the patterns
that all the other teams had submitted and to try to identify
one thing concretely they could say about each pattern that
needs improvement – and one concrete suggestion for how
to improve it.

As context for this activity, students were advised that
Patterns are initially weak hypotheses. We need to develop
them to the point where they are strong enough to test –
and then we need to start testing them. As part of probing
an initial proposal for a Pattern, one should be broadly eval-
uating Force and Features as follows. Forces: is it true that
the stated “conflicting forces” actually do occur in the stated

context? Feature: is it true that the stated feature actually
does resolve the “conflicting forces” in all cases?

In addition to such broad guidelines, students also re-
ceived an evaluation checklist:

• Is the Pattern really present in the original game?

• Do you “believe” the Pattern – does it express some-
thing about the game that actually makes the game
fun to play?

• Is it well-described:

Forces

– Is each Force a real Force (that people really care
about)?

– Is each Force relevant to the game?

– Are the Forces in conflict?

Warning! One Force is not a “solution” to an-
other Force. Rather, one Force usually expresses
a problem that happens if we “go too far” with
the opposite of the other Force.

Feature

– Does the Feature actually resolve the conflict in
the Forces?

– Is the Feature expressed as something we can do?
(example: “therefore, do/make X”)

Name

– Does the Pattern name clearly express the Fea-
ture we should build?

• Do you find yourself nodding in agreement as you read
the Pattern description?

• “If I had to use this Pattern to build something, would
it help? Would it help enough?”

• Does the Pattern suggest interesting ways to improve
the game?

• Is pattern clear enough that we can separate games
that have the Pattern from those that do not?

• Would games of the same type that do not have the
Pattern be more fun to play if they did?

As a result of discussions and feedback based on using this
template, the earlier student Pattern was revised to be:

Name: Reward in Kind

Forces: For games that require quick hand-eye
skill:

Force 1: if the game does not provide players
with rewards, players will experience the feeling
that “there is no point” in playing.

But,

Force 2: if the game does provide provide play-
ers with rewards, then players may lose interest
in the play (and start to care only about the re-
wards)

Feature: Therefore, reward player’s success at
some demonstration of skill by giving the player
increased challenge of the same kind. For exam-
ple, rewards for increased hand skill should be in
the form of something demanding even further
increases in hand-skills.

3.1.3 Stage 3: Pattern-based Innovation
The team that developed the Reward in Kind Pattern

wound up creating a number of interesting extensions to the
base version of Breakout. In some cases these were “obvious”
extensions that were well known from commercial variants
of the game (e.g., increasing the speed of the ball, number
of blocks, speed of descending blocks, and number of balls).
On the other hand, they also arrived at some interesting
novel variations by focusing on different aspects of “what a
player finds challenging” in terms of hand-eye coordination.
This led them to implement, for example, situations where
the ball(s) and/or blocks were made harder to see in vari-
ous ways – and where the notion of paddle/ball control was
modified.

Aside from the particular innovations, it is worth noting
another aspect of this team’s design process: the team mem-
bers were remarkably focused on a consistent set of exten-
sions to their implementation. By contrast, the process and
results of teams that had a less clear Pattern – or, for some
reason did not stay with the innovations suggested by their
Pattern – were quite different. The new games implemented
by those teams gave the impression of a “grab bag” of dif-
ferent game-play features. Not only that, but the process of
development for those teams often got mired in incidental
debates or concerns.

4. DISCUSSION
To be clear, the claim is not that the design Patterns made

the only (or even the major) difference in team process or
results. Certainly, there was a great deal of team-support
that came in many different forms and it was not the pur-
pose of the course to try and localize the consequences of
particular kinds of support to the particular results. How-
ever, through-out the course there did seem to be a strong
correlation between the degree to which a team arrived at
a clear Pattern, the degree to which they remained focused
on it as a source of innovation, and the degree to which the
resulting implementation was interesting.

Beyond that, the results of the course suggest that “best
practice” design Patterns may indeed contribute to design
innovation. Furthermore, it may be fruitful to try develop-
ing a more elaborate “Pattern language for developing de-
sign Patterns.” To be sure, the Pattern design Template
described here is extremely limited (and obviously does not
follow the format of typical design Patterns). Indeed, it is a
Pattern only to the extent that it (somewhat) highlights ten-
sions (Forces) – and it expresses desired solutions (Features)
in the form of ratios/relationships.

A better example of the potential of Patterns for pattern
design comes from the paper by Meszaros and Doble [8]
mentioned earlier. Although most of the Patterns proposed
in that paper provide “stylistic” guidance, they do propose
three Patterns for how to create a good Pattern name. This
is a crucial aspect of Pattern-creation, one that can be quite
difficult – and one that makes a difference to end-users of
Patterns. Furthermore, the emphasis they place on method

in these particular Patterns is clearly an approach to meta-
Patterns that is similar to the effort described here.

Even granting the limitations of the template used in our
course, it is worth commenting on one particular aspect of
it, namely the degree to which it restricted the way students
were required to identify and specify Forces. There were a
number of reasons for this. One straight-forward reason is
that initially, when the template did not restrict students
to two Forces, there was a tendency for teams to propose
lots of Forces that were weak or unconvincing, rather than
identifying one or two and improving them. But there were
several other categories of difficulties in the formulation of
Forces that suggested the need to restrict them. For ex-
ample, Forces sometimes seemed unrelated – to each other
or to the proposed Feature. Another common problem was
the description of a Force as the “opposite” of the proposed
Feature. For example, a proposed Force might be: “peo-
ple don’t like it when they don’t have enough resources”
– and the proposed Feature would be: “give them enough
resources.”

Beyond issues related to Forces, unfortunately the limits
of space prevent elaboration of the many issues relevant to
creating appropriate Pattern names, Features, and Context
descriptions. To varying extents, these were raised during
the course and attempts were made to address them with
revisions to the course template.

5. CONCLUSIONS
One of the major issues we did not explore in the work

reported here is the degree to which the approach outlined
in this paper can lead to qualitatively new games, rather
than variations on existing ones. This is a complex topic
worthy of sustained examination. Nonetheless, the results
described here suggest that it is worth pursuing.

In our experience, once designers have patterns, it is very
clear “what to do” – whether one is trying to evaluate the
extent to which a Pattern is present in an existing game or
whether one is trying to improve a game by strengthening
the Pattern. That is not to say it is easy. Design is still
challenging – but it is hard in the sense that we are“engaged
with a difficult and challenging problem” as opposed to “it
is hard because we have no idea what to do.” In this sense,
design becomes difficult the way a good game is difficult –
it is the kind of difficulty we enjoy.

There is certainly much work to be done on the develop-
ment of materials to support the identification, creation, and
revision of Patterns – whatever form those materials take.

5.1 Future Work
There are several aspects of Alexandrian patterns that

become problematic in the context of game design. Here
we highlight three that we are pursuing as part of ongoing
research.

How can Patterns account for temporality or process in
games – something that is not addressed by Alexander, with
his claim that architecture structures space? Intuitively this
seems like an essential distinction between software systems
and (physical) architectural structures. Unfortunately, as
with so many common sense intuitions, the viability of this
distinction becomes problematic on close inspection.

A related issue is Alexander’s claim, “if you can’t draw
a diagram of it, it isn’t a pattern” [1]. A number of the
proposals for HCI design patterns include illustrations or

pictures of target features. Nonetheless, intuitively it feels
as if we would like something other than “can you illustrate
it?” as a criterion for confirming whether we have truly
identified computational design patterns.

Finally, in Alexander’s original presentation of Pattern
languages, there is a claim that it is not only possible to ar-
ticulate the Patterns that make existing built environments
good – it is possible to study the Forces at work in people’s
lives to develop new Patterns. There seems to have been
virtually no work on this kind of Pattern development.

6. ACKNOWLEDGMENTS
Thanks to all my former students in the design courses

at Uppsala University and Linkoping University for their
energy, creativity, and discipline. Also, thanks to my col-
leagues in those courses, Oskar Jonsson and Mikael Kind-
borg, for supporting my “crazy ideas” about the design of
media technology.

7. REFERENCES
[1] C. Alexander. The Timeless Way of Building. Oxford

University Press, 1987.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel. A Pattern Language:
Towns, Buildings, Construction. Oxford University
Press, 1977.

[3] S. Bjork and J. Holopainen. Patterns in Game Design.
Charles River Media, 2004.

[4] J. Borchers. A Pattern Approach to Interaction Design.
Wiley, 2001.

[5] W. Cunningham and K. Beck. Using pattern languages
for object-oriented programs. In Proceedings of
OOPSLA’87, Orlando, Florida, 1987.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[7] B. Kreimeier. The case for game design patterns.
Gamasutra, March 2002.

[8] G. Meszaros and J. Doble. A pattern language for
pattern writing. In R. C. Martin, D. Riehle, and
F. Buschmann, editors, Pattern Languages of Program
Design 3, pages 529–574. Addison-Wesley Professional,
1997.

[9] J. Tidwell. Designing Interfaces: Patterns for Effective
Interaction Design. O’Reilly Media, Inc., 2005.

	Introduction
	Creating Design Patterns
	Creating Game-design Patterns
	Game-design Pattern Course
	Stage 1: Pattern Creation
	Stage 2: Pattern Improvement
	Stage 3: Pattern-based Innovation

	Discussion
	Conclusions
	Future Work

	Acknowledgments
	References

