
Comic Strip Programs: Beyond Graphical Rewrite Rules

Mikael Kindborg and Kevin McGee
Department of Computer and Information Science
Linköping University, S-58183 Linköping, Sweden

{mikki, kevmc}@ida.liu.se

Abstract

Comics and programs both are static representations
of something dynamic. While a comic book almost looks
and feels like an animated cartoon, the source code of a
program seldom resembles the visible runtime behaviour.
By using comic strips to represent concurrent events,
graphical programs that feature interactive, animated
characters and objects can be expressed in a visually
direct way, making it easier for both children and adults
to create their own computer programs. Compared to
graphical rewrite rules, comic strip programs have a
potential for increased expressiveness and flexibility,
because of how the semiotics of comics can be used to
express a wide variety of situations. There are also
challenges with using comics as a program
representation, for example, comics have no signs for
conditionals, concurrency, and generalisations.

1. Introduction

One approach for making programming easier, is to
use a program representation that looks similar to and
directly maps to the runtime representation [1]. If the
source code of a program directly maps to and has a
strong similarity to that which is seen on the display when
running the program, the gap between the two
representations can be bridged, and the need for difficult
and error-prone mental transformations could be reduced,
thus making programming easier.

A visual representation that is interesting in this respect
is comics. Like a program, a comic is a static representa-
tion of something dynamic. The medium of comics gives
a very direct impression of the action going on in the
story. To the comic book reader, the characters in a comic
almost look like they are moving and they almost sound
as if they are speaking. For programs that consist of
interactive graphical objects, like games, graphical
simulations, and interactive pictorial stories, the signs
used in comics have the potential to describe the
behaviour of the objects in a way that strongly resembles
the visual result of running the program.

In comics, panels are used as the basic temporal device
for communicating dynamics in a static medium [2], [3].
A static representation is straightforward to edit, which is
essential to programming, and provides an overview that
is independent of the real-time flow of a dynamic
representation. Inside panels, comic book artists use a rich
vocabulary of contextual signs (“markers”) for
representing dynamic and abstract features. Examples
include motion markers (e.g. speed lines and ghost
images), voice balloons, and sound words (onomatopoetic
symbols). Importantly, such markers are shown in the
immediate visual context of the character or object having
the feature represented by the sign. This presentation
technique takes advantage of the way human perception
can quickly perceive a situation “at a glance”, and creates
a high degree of visual directness. Additionally, many
people are familiar with comics, and even though there
are cultural differences, for example between Western
European and Japanese comics [3], the sign language of
comics is well-known within the comic book reading
community. This could mean that people who want to
learn to program would feel familiar with the signs used
in a comic strip programming language.

One way to use comics for programming of graphical
objects, is to have conditional comic strips that represent
events in a program [4]-[7]. Such comic strip programs
share many characteristics with graphical rewrite rules
[1], [8]-[16], also called visual before-after rules. The
before-part of a rule consists of a picture representing a
part of the world. When the before-part matches the
current world state, the world is changed to the state
shown by the picture in the after-part of the rule. Such
rules look very similar to what actually happens when the
program executes. Graphical rewrite rule systems
commonly use a grid-based world model, which makes it
straightforward to specify the before and after parts of a
rule in a spatially clear and non-ambiguous way.

Graphical rewrite rules are an example of an analogical
representation, a representation that has a structural
similarity to what it represents [1]. In semiotics, such
representations are called iconic signs. An icon is a sign
that has a similarity or likeness to the object it signifies; it
imitates the signified. A symbolic sign, by contrast, is
arbitrary and gets its meaning by convention [17].

 Analogical representations and iconic signs are usually
easy to understand, but not everything can be represented
this way. In programming, there are constructs that have
no iconic representation. Comics offer a way to integrate
symbolic signs into the context of iconic signs, which can
help understanding symbolic representations.

This paper presents a way to use comics for event-
based visual programming, and discusses how the signs of
comics can be applied to programming. Finally, it is
suggested that comic strip programs have the potential to
go beyond graphical rewrite rules in terms of expressive-
ness and flexibility, while maintaining a strong visual
directness between the program and the runtime display.

2. Comic strip programming

Several prototypes have been developed to test the idea
of comic strip programming. Both low-fidelity paper
prototypes and very high-fidelity computer prototypes
have been studied [4]-[7]. The domain focused by these
prototypes have been simple games and interactive stories
with graphical objects. In the following, examples of
comic strip programs will be given using screenshots from
the most recent system being developed, called ComiKit.

In comics, the action sequences that make up the story
are communicated using strips of panels, where each
panel shows a part of the action. If we introduce the
notion of conditional strips, comic strips can be used to
describe events in a program. In a conditional comic strip,
the first panel is the precondition for the actions in the
subsequent panels. Such strips describe non-linear and
potentially concurrent events, rather than a sequential
flow of actions in a story.

A comic strip program consists of graphical objects
that typically depict figurative characters and items. An
object can have any graphical representation, though, as it
is the programmer who draws or chooses the pictures.
Each object can have one or more pictures. For example,
a character could have two pictures, one for happy mood
and one for sad mood. The pictures represent different
states of an object.

Each object may have one or more comic strip events
associated with it. The program is run by placing
characters on a play area and moving them with the
mouse, causing events to trigger. Events are continuously
monitored and executed by the runtime engine (the
interpreter).

Figure 1 shows an example of event strips created by
two girls in fifth grade, during a field study in a school.
Figure 2 shows what it looks like when the game is
played. The preconditions used in Figure 1 are picture-
matching and touching another object. The action used is
picture-changing. Picture matching works by checking if
an object has the picture shown in the precondition. If, for
example, the character called “John” in Figure 1, would
be on the play area having a picture of him sleeping, the

coughing character would not infect him, because the first
event in Figure 1 would not match.

The situation shown in the precondition of an event
strip can be thought of as an example of a situation that

Figure 1. Programming with event strips. This
example shows two events for a character called “John”.
In the first event strip John becomes infected and gets
sick. The precondition panel shows John touching another
character, who has got a cough. In the action panel, the
picture of John changes to show him sad and crying (the
shapes below John are pools of tears). In the second event
strip, he gets cured by taking medicine. The precondition
panel shows the sick John touching a bottle of medicine,
and the action panel changes his picture to happy.

Figure 2. The play area. The player drags characters
from the gallery at the left and drops them on the play
area. The player can move the characters on the play area
with the mouse, causing events to trigger as the characters
touch each other. Here is a situation where the player has
moved the coughing character with the mouse, to make it
touch John. This caused the first event in Figure 1 to
trigger, which changed John's picture from happy to sick.

triggers the event. On the play area, the characters need
not touch each other in exactly the same way as in the
precondition, for the event to trigger. Touching in any
direction (left, right, above, or below), will match the
precondition.

The object model that is used is similar to classes in
object-oriented programming. In an event there is always
a main object (similar to the notion of “self” in object-
oriented programming languages such as Smalltalk). The
main object is the object for which an event is defined
(events belong to objects like methods belong to classes
in object-oriented programming).

Dragging a character from the gallery to the play area
creates an instance of that object type. Several copies
(instances) of a character can be created this way (new
instances can also be created in events). If there would be
many copies of the character called John on the play area
in Figure 2, they could all be infected by touching them
with the coughing character.

The preconditions currently implemented are picture
matching, touching another object, keyboard pressed, time
interval, and random time interval. The actions
implemented are changing the picture of an object,
moving an object, delete an object, and create a new
object instance. Many additional preconditions and
actions could be imagined.

Several field studies of previous prototypes of the
ComiKit system were made in a school together with
children in grade four and five [6], [7]. The children could
learn the fundamentals of comic strip programming to
create programs like interactive picture-stories in one to
two hours. However, basic parts of the programming
model required explanation to be understood in the
intended way. The main finding was that the children's
intuitive interpretation of comic strip programs was that of
a linear action sequence. The children had to learn
programming constructs such as conditionals and
concurrency to be able to successfully create programs,
notions that contradicted the familiar view of comics as
sequential stories.

The prototypes studied used standard rectangular
panels, and the arrow-shaped precondition panel used in
the current system is an attempt to make the conditional
panel “look special”. How this shape is understood by
users has not yet been studied, however. Another problem
was to put events on the “right” character. For some
events it is important that the main object is properly
chosen, and the children were not always aware of this.

In the prototypes used, each event could have only one
action panel (this is also the case in the current system).
This restriction was made primarily to simplify the
implementation. Interestingly, this forced the children to
break up linear action sequences into multiple events,
which resulted in that the interactive stories they created
could be played in a much more open-ended style than
what could be expected at first [6].

3. Comic book signs and visual programming

Several comic book signs can be applied to visual
programming, but there are also many symbolic signs that
are needed for programming that are missing in comics.

3.1. Applying comic signs to programming

The following is a discussion of signs in comics that
can be applied directly to visual event-based programs.

Characters. The appearance of a character in the
program directly maps to the appearance in the runtime
representation.

Panels. The panels in a comic divide time into smaller
units. In a program, panels can be used to represent action
sequences, and by introducing conditional panels, events
with preconditions can be expressed. Note that a panel in
a comic is not just a frozen moment of time. Unlike a
photograph, a panel can show a situation that is extended
in time. Speaking in a voice balloon, for example, is not
an instantaneous action. Objects in a program could also
perform multiple activities within the timespan of a panel.

Meetings. Characters in a panel are commonly shown
meeting, simply by positioning them close to each other.
This can be used in a program to show a collides
(touches) condition in a visually direct way.

Motion markers. Comic books feature signs like
speed lines and ghost images that can be used to show the
motion of objects in a visual program. An example of a
ghost shadow motion marker is given i Figure 3.

Transitions. In comics, as in film, cuts between
perspectives and scenes are common. For example, the
panels in an event strip could show objects at different
places, as in Figures 3 and 4.

Inner panels. An inner panel is a panel inside another
panel. Such panels are used to show something that
happens at the same time, but at another place. These
panels can be used by event strips to make location-
independent references to objects (similar to global
variable references). See Figure 5 for an example.

Voice balloons and text boxes. Balloons can be used
to output text that is “spoken” by the characters in the
program. Contextual text boxes could be used to represent
symbolic programming constructs that are awkward or
impossible to express pictorially, for example, textual and
numerical object properties.

3.2 Signs that are missing in comics

The following are examples of programming constructs
for which there are no corresponding signs in comics.

Conditionals. Strips in a comic book does not have
conditional panels. Introducing a special sign, like an
arrow between the first and the second panel, or an arrow-
shaped precondition panel, could help to communicate the
special status of the first panel.

Non-sequential control structures and concurrency.
Events in a comic strip program can be triggered in any
order and execute concurrently, depending on, for in-
stance, how the player interacts with a game. This stands
in contrast to the reading order of comics, where strips
represent a sequence of actions.

Deletion of objects. Comics use situations in the
context of the story to show when something disappears.
There does not seem to exist generic signs for deleting
objects. The X-shaped cross in Figure 6 is an attempt at
creating a generic sign for the delete action.

Generalisation. An example of generalisation that is
handy in a precondition panel is being able to say that an
object should match objects of the same kind regardless
of the picture (picture generalisation), or that it should
match any existing object (type generalisation). Such
generalisations can reduce the number of strips needed to
express an event [7]. Comics depict concrete situations
and have not developed signs for these kinds of
generalisations. Possible signs could be a circle with a
question mark for matching any object, and an outline of
the first picture of an object for matching any object
picture. Note that we get picture generalisation “for free”
when the main object is not present in the precondition
panel (see Figures 3 and 4). However, this technique can
not be used when touching other objects, because then the
main object must be present in the first panel.

Variables. In a way, an object instance can be thought
of as a global variable with a value range given by the
pictures defined for the object type (like an enumerated
data type). Objects can check the state of another object
by including that object in the precondition (without
touching it). However, if there are several instances of the
other object, there is currently no way to identify them.
Global names could be used for this, or an object could be
linked to another, creating something similar to an
instance variable referring to another object.

Negation. Expressing negation pictorially is another
example of something that comics have no generic signs
for. How would one express that an object is not touching
another object, or that an object should not have a
particular picture? One solution could be to negate the
entire precondition panel, or to have two panels following
the precondition, labelled “YES” and “NO”, which would
be similar to an if-else clause.

4. Beyond graphical rewrite rules

The idea of representing programs as picture sequences
has also been used by systems based on graphical rewrite
rules (also called before-after rules). Examples of such
systems are BITPICT [8], Cartoonist [12], KidSim [13],
[14], Stagecast Creator [1], and AgentSheets [11], [15],
[16]. This section discusses limitations of graphical
rewrite rules and how these limitations could be addressed
by the visual language of comics.

Figure 3. Motion marker. This example shows an
example of a ghost image motion marker. The
precondition contains a picture of a keyboard key. When
pressing the R key, the character moves to the right.

Figure 4. Panel transition. In this strip the panels show
different parts of the world. When there is a sun shining
in the world, the main character will become happy,
regardless of its current look. This strip is an example of
what is called an aspect-to-aspect transition in comics.

Figure 5. Inner panel. Since the Sun is inside an inner
panel, it can be located anywhere for the event to trigger,
but it will trigger only when the main character looks sad.

Figure 6. Delete action. In this event the main character
“eats” an ice cream when touching it. The cross signifies
the delete action, and is an example a contextual marker.

4.1. Limitations of graphical rewrite rules

Graphical rewrites. Typically, graphical rewrite rules
define before-after rewrites of the world state. This makes
it problematic to refer to objects in a flexible way, or to
objects that could be located anywhere in the world. Most
systems that use graphical rewrite rules seem to have the
restriction that the before part must be the same size and
show the same location of the world as the after part, and
except for objects created or deleted, the same objects
must be present in both parts.

Iconic signs. Graphical rewrite rules consist of
pictures of domain objects. This makes the representation
iconic to the runtime representation, but places limits on
what can be expressed. For example, in Stagecast Creator
[1], symbolic program constructs are placed outside of the
pictorial part of the rule.

The grid. Most graphical rewrite rule systems use a
grid-based world model. There are several limitations of
using a grid; objects must have fixed sizes, must be placed
at discrete locations, can not overlap, and object motion is
restricted and jagged. Interacting with objects that are
confined to a grid in a flowing, direct manipulation style,
e.g. continuously dragging an object with the mouse, is
impossible. It should be noted that it is possible to use
before-after rules with other models than a grid. One
example is ChemTrains [9], [10], a system which uses a
topological model where any topology based on
containment and connected locations can be used,
including a grid.

4.2. Using the visual language of comics

 In the following it is discussed how the visual
language of comics could be used to address some of the
problems discussed above.

Panel transitions. McCloud identifies six types of
panel transitions that are used in comics [3], pp. 70-72:
Moment-to-moment (e.g. open eye – closed eye), action-
to-action (e.g. glass being poured – someone drinking),
subject-to-subject (e.g. two people talking – close up of a
ringing phone), scene-to-scene (e.g. at home – at a
football game), aspect-to-aspect (several aspects or moods
of something, e.g. sun shining – child playing), and non-
sequitur (has no obvious meaning). The transitions that
are used by graphical rewrite rules are similar to moment-
to-moment and action-to-action transitions where the
panels show the exact same perspective. By adopting
additional kinds of transitions, making before-after
pictures less tightly coupled, the restrictions imposed by
before-after rewrites could be relaxed. Visual
programming languages could take advantage of
increased expressiveness and flexibility, while preserving
a direct visual mapping between the program and the
runtime result. In addition to various transitions, different
perspectives could be used. The precondition could for

example contain a close-up of a control panel with a
button in a pressed state, and the action could contain a
full view of a rocket being launched.

Contextual signs. Comics mix iconic and symbolic
representations, and use a wide variety of contextual signs
to visualise what is going on inside the panels. Symbols,
like motion markers, are used to visualise dynamic aspects
within a static picture. Such markers are shown in the
context of the object being modified by the sign, which
creates a direct mapping between the symbolic sign and
the iconic object. The tight integration of signs brings the
picture to life, transforming the static image to a dynamic
one in the mind of the reader. Marker signs also extend
the time span of a panel, making it possible to visualise
several actions within a panel.

Visual programming languages could use contextual
signs to represent symbolic attributes of objects in a
visually direct way. Textual and symbolic signs, like
numbers and mathematical operators, could be integrated
into the context of the graphical objects in a program. The
way comics integrate text and pictures creates a quality of
directness; the representation becomes a whole which
guides the reader by providing mappings within the
representation itself.

AgentSheets is a system that takes advantage of mixing
textual and iconic signs [15]. However, several
programming constructs in AgentSheets are text-only and
rules tend to look more like illustrated texts than like
pictures with text [15], [16]. The similarity between the
program and the runtime result is not as strong as it
potentially could be by adopting comic book techniques.

Gridlessness. Objects that live in a gridless world can
be interacted with in a much more flowing way than what
is possible when restricted to locations in a grid. To make
direct manipulation “feel right”, the motion must be
continuous. In a gridless model, objects can be any size,
they can move in any direction at any speed, and they can
overlap each other. Objects in a gridless model can refer
to each other independently of their relative location in a
grid. Inner panels are an example of how a visual
programming language can use signs from comics to refer
to objects in a location-independent way. Furthermore, a
continuous coordinate system makes it possible to
represent Logo-style turtle geometry in a visually direct
way with motion markers [7].

It should be emphasised that using a grid also has
several advantages, like reduced brittleness, relational
transparency, clarity of spatial relationships, implicit
communication between adjacent grid-cells, and regular-
ity [11]. A gridless system could use an editing grid as a
way to get some of these advantages. It should also be
possible to extend a grid-based model to become more
flexible, e.g. by allowing overlapping objects. A technical
advantage with using a grid-based model is execution
speed, in particular when checking if an object is close to
objects in adjacent grid cells.

5. Conclusion

The comic strip program examples given in this paper
are intended to demonstrate that the visual language of
comics has the potential to represent event-based visual
programs in an expressive and flexible way that directly
maps to the runtime representation.

Comics have signs for expressing action sequences in a
visually direct way, but lack signs for expressing
conditionals, concurrency, generalisation, and other pro-
gramming constructs. New signs have to found or
invented to express programming concepts in a clear way,
and people who want to create comic strip programs need
learn these signs to become successful programmers.

An important contribution of comics is the use of
contextual symbolic signs. Such signs usually have no
meaning in isolation, they are an effect of what happens to
the objects in a panel. Speed lines and ghost images, for
example, are used to signify that something is moving. In
our imagination, a character with speed lines “looks like”
it is moving, even though in the medium nothing moves at
all. Another example is onomatopoetic symbols, signs that
imitate sound, for example the letters Zzzzzz, which are
used to signify that someone is sleeping. In the
imagination of the reader, the sign becomes the sound;
seeing the sign is almost like hearing the sound. There are
many other signs that once known can be said to “look
similar” to what they signify, even though they are
symbolic signs. Within the sign system of comics, these
contextual signs take on a very direct, sometimes almost
iconic, quality.

Contextual signs could be used in visual programming
to visualise how objects are effected by the operations in a
program. Such signs have the potential to address some of
the limitations of analogical and iconic representations
when it comes to expressing symbolic operations. Signs
invented by comic book artists tend to become learned
and accepted by the readers as they are introduced.
McCloud writes: “Within a given culture these symbols
will quickly spread until everybody knows them at a
glance.” [3], p. 131. If the comic book style of
programming would catch on, a similar evolution might
take place for visual programming.

In the beginning of film art, movies were like filmed
theatre. A static camera recorded actors performing on a
stage. Since then, film has evolved into a genre with a rich
visual language. The medium of comics has evolved in
parallel with film, and comic books have transferred and
transformed the language of film to fit the printed
medium. Visual programming with iconic representations
of domain objects also has the potential to evolve, from
the static camera used by graphical rewrite rules to
something that we have not yet seen.

References

[1] D.C. Smith, A. Cypher, L. Tesler, “Novice Programming
Comes of Age”, CACM, vol. 43, no. 3, pp. 75-81, Mar.
2000.

[2] W. Eisner, Comics & Sequential Art, Florida: Poorhouse
Press, 1985.

[3] S. McCloud, Understanding Comics, New York:
HarperCollins Publishers, 1993.

[4] M. Kindborg., A. Kollerbaur, “Graphical Tools for
Description of Dynamic Models”, in Proc. INTERACT'87,
Stuttgart, Germany. 1987.

[5] M. Kindborg, “How Children Understand Concurrent
Comics: Experiences from LOFI and HIFI Prototypes”, in
Proc. HCC'01. Stresa, Italy, 2001.

[6] M. Kindborg, “Comics, Programming, Children, and
Narratives”, in Proc. Interaction Design and Children,
Eindhoven, The Netherlands, Aug. 28-29, 2002.

[7] M. Kindborg, “Concurrent Comics - Programming of
social agents by children”. Ph.D. Dissertation, Linköping
University, 2003.

[8] G.W. Furnas, “New Graphical Reasoning Models for
Understanding Graphical Interfaces”, in Proc. CHI’91,
New Orleans, 1991.

[9] B. Bell, “ChemTrains: A Rule-Based Visual Language for
Building Graphical Simulations”, Technical Report CU-
CS-592-92, Department of Computer Science, University
of Colorado at Boulder, 1992.

[10] B. Bell, Bringham, C. Lewis, “ChemTrains: A Language
for Creating Behaving Pictures”, in Proc. IEEE Workshop
on Visual Languages, Bergen, Norway. 1993.

[11] A. Repenning, W Citrin, “Agentsheets: Applying Grid-
Based Spatial Reasoning to Human-Computer
Interaction”, in Proc. VL’93: IEEE Workshop on Visual
Languages, Bergen, Norway, 1993.

[12] R. Hübscher, “Composing Complex Behaviour from
Simple Visual Descriptions”, in Proc. IEEE Symposium
on Visual Languages, Boulder, CO, 1996.

[13] C. Rader, C. Brand, C. Lewis, “Degrees of
Comprehension: Children’s Understanding of a Visual
Programming Environment”, in Proc. CHI’97, Atlanta,
USA, 1997.

[14] D.C. Smith, A. Cypher, J. Sphorer, “KidSim:
Programming Agents without a Programming Language”,
in Software Agents, J. M. Bradshaw, Ed. AAAI Press / The
MIT Press, 1997, pp. 165-190.

[15] C Rader, G. Cherry, C. Brand, A. Repenning., C. Lewis,
“Principles to Scaffold Mixed Textual and Iconic End-
User Programming Languages” in Proc. IEEE Symposium
of Visual Languages, Nova Scotia, Canada, 1998.

[16] A. Repenning, A. Ioannidou, “Agent-Based End-User
Development”, CACM, vol. 47, no. 9, pp. 43-46, Sep.
2004.

[17] T.A. Sebeok, Signs: An Introduction to Semiotics,
Toronto: University of Toronto Press, 1994.

